viernes, 28 de marzo de 2025

España. Un algoritmo basado en la IA ayuda a localizar las celdas llenas de miel en las colmenas

  viernes 28 de marzo de 2025

https://www.diariocordoba.com/agricultura-medio-ambiente/2025/03/27/algoritmo-basado-ia-ayuda-localizar-115738763.html

Un algoritmo basado en la IA ayuda a localizar las celdas llenas de miel en las colmenas

Entrenado a base de imágenes del colmenar de la Universidad de Córdoba, presta apoyo a una tarea compleja que tradicionalmente se realiza de forma manuale abejas. / CÓRDOBA

Diario CÓRDOBA

Diario CÓRDOBA

Córdoba

En apicultura, la tarea de localizar en un panal las celdas que contienen crías, polen o miel es fundamental para obtener información sobre cuándo recolectar la miel o evaluar el estado de salud de la colmena. Se trata de un proceso que se realiza tradicionalmente de forma manual y cuya automatización se ha encontrado siempre con un problema: las abejas cubren con cera las superficies que contienen miel para mantenerlas en los niveles de humedad adecuados, lo que hace que pierdan su forma hexagonal característica. Esto dificulta su identificación a través de sistemas que han sido diseñados para identificar las celdas buscando formas hexagonales.

Ahora, un equipo de la Universidad de Córdoba formado por personal investigador de los departamentos de Zoología e Ingeniería Electrónica y de Computadores ha empleado inteligencia artificial sobre imágenes para desarrollar un sistema que ayude a los apicultores en esta labor. Para ello han aplicado un algoritmo de segmentación semántica de aprendizaje profundo denominado ‘Feature Pyramid Network (FPN)’ que permite realizar múltiples clasificaciones a diferentes resoluciones, ofreciendo una solución a este problema de forma robusta y automatizada.

El investigador del Departamento de Ingeniería Electrónica y de Computadores Francisco Javier Rodríguez Lozano explica que el algoritmo ha sido entrenado con distintas fotografías de panales obtenidas del colmenar de la Universidad de Córdoba y se ha comparado con diferentes algoritmos de segmentación semántica, como U-Net, y, además, con siete extractores de características diferentes.

Este trabajo, en el que participan también Francisco Javier Quiles Latorre y Manuel Ortiz López (Departamento de Ingeniería Electrónica y de Computadores) y José Manuel Flores Serrano (Departamento de Zoología), ha obtenido unos resultados de clasificación por encima del 92% en métricas típicas de segmentación de imágenes, lo que garantiza un importante apoyo a la tradicional tarea manual realizada por los apicultores, mejorando su precisión y eficiencia y reduciendo el tiempo de ejecución de esta labor.

No hay comentarios:

Publicar un comentario